Special Relativity Coordinate Transformations

Lorentz-Einstein transformations between coordinate systems S and S':

S' moving at constant speed $\Delta x / \Delta t = v$ relative to S

S moving at constant speed $\Delta x' / \Delta t' = -v$ relative to *S*'

Lorentz factor: $\gamma \equiv (1 - v^2/c^2)^{-1/2}$

$t = \gamma(t' + \nu x'/c^2)$	$t' = \gamma(t - vx/c^2)$
$x = \gamma(x' + \nu t')$	$x' = \gamma(x - vt)$
y = y'	y' = y
z = z' $\Delta t = \gamma (\Delta t' + v \Delta x' / c^2)$	$z' = z$ $\Delta t' = \gamma (\Delta t - \nu \Delta x / c^2)$
$\Delta x = \gamma (\Delta x' + v\Delta t')$	$\Delta x' = \gamma (\Delta x - v\Delta t)$
$\Delta x / \Delta t = (\Delta x' + v\Delta t') / (\Delta t' + v\Delta x' / c^2)$	$\Delta x' / \Delta t' = (\Delta x - v\Delta t) / (\Delta t - v\Delta x / c^2)$
$\Delta x' = 0 \Longrightarrow \Delta x / \Delta t = v \checkmark$	$\Delta x = 0 \Longrightarrow \Delta x' / \Delta t' = -v \checkmark$

Each clock is stationary in its frame

S measure of S' clock with $\Delta x' = 0$	S' measure of S clock with $\Delta x = 0$
$\Delta t_{S' clock} = \gamma (\Delta t' + \nu \Delta x' / c^2) = \gamma \Delta t'$	$\Delta t'_{S \ clock} = \gamma (\Delta t - v \Delta x / c^2) = \gamma \Delta t$

End points of a moving ruler are measured simultaneouslyS measure of S' ruler with $\Delta t = 0$ S' measure of S ruler with $\Delta t' = 0$ $\Delta x' = \gamma(\Delta x - v\Delta t) = \gamma \Delta x_{S' ruler}$ $\Delta x = \gamma(\Delta x' + v\Delta t') = \gamma \Delta x'_{S ruler}$ $\Delta x_{S' ruler} = \Delta x'/\gamma$ $\Delta x'_{S ruler} = \Delta x/\gamma$

SR is symmetric between S and S'

As seen by *S*, the *S*' clock runs slower than an identical *S* clock by a factor of γ : any physical process in *S*' takes longer to complete by a factor of γ than in *S* (time dilation). Likewise, as seen by *S*', any physical process in *S* takes longer to complete by a factor of γ than in *S*' (time dilation is symmetric in SR).

As seen by *S*, the *S*' ruler is shorter than an identical *S* ruler by a factor of γ : any object comoving with *S*' is shortened in the direction of motion by a factor of γ than in *S* (length contraction). Likewise, any object co-moving with *S* is shortened in the direction of motion by a factor of γ relative to its length as seen by *S*' (length contraction is symmetric in SR).

<u>Symmetry of Time Dilation</u>	Symmetry of Length Contraction
$\Delta x' = 0 \implies \Delta t = \gamma \Delta t'$	$\Delta t = 0 \implies \Delta x = \Delta x' / \gamma$
$\Delta x = 0 \implies \Delta t' = \gamma \Delta t$	$\Delta t' = 0 \implies \Delta x' = \Delta x / \gamma$